Toluene monooxygenase-catalyzed epoxidation of alkenes.

نویسندگان

  • K McClay
  • B G Fox
  • R J Steffan
چکیده

Several toluene monooxygenase-producing organisms were tested for their ability to oxidize linear alkenes and chloroalkenes three to eight carbons long. Each of the wild-type organisms degraded all of the alkenes that were tested. Epoxides were produced during the oxidation of butene, butadiene, and pentene but not hexene or octadiene. A strain of Escherichia coli expressing the cloned toluene-4-monooxygenase (T4MO) of Pseudomonas mendocina KR1 was able to oxidize butene, butadiene, pentene, and hexene but not octadiene, producing epoxides from all of the substrates that were oxidized. A T4MO-deficient variant of P. mendocina KR1 oxidized alkenes that were five to eight carbons long, but no epoxides were detected, suggesting the presence of multiple alkene-degrading enzymes in this organism. The alkene oxidation rates varied widely (ranging from 0. 01 to 0.33 micromol of substrate/min/mg of cell protein) and were specific for each organism-substrate pair. The enantiomeric purity of the epoxide products also varied widely, ranging from 54 to >90% of a single epoxide enantiomer. In the absence of more preferred substrates, such as toluene or alkenes, the epoxides underwent further toluene monooxygenase-catalyzed transformations, forming products that were not identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26.

Methylobacterium sp. strain CRL-26 grown in a fermentor contained methane monooxygenase activity in soluble fractions. Soluble methane monooxygenase catalyzed the epoxidation/hydroxylation of a variety of hydrocarbons, including terminal alkenes, internal alkenes, substituted alkenes, branched-chain alkenes, alkanes (C(1) to C(8)), substituted alkanes, branched-chain alkanes, carbon monoxide, e...

متن کامل

Epoxidation of Alkenes and Oxidation of Alcohols with Hydrogen Peroxide Catalyzed by a Fe (Br8TPPS) Supported on Amberlite IRA-400

Iron (III) meso-tetrakis(p-sulfonatophenyl)-β-octabromoporphyrin supported on Amberlite IRA- 400 [Fe(Br8 TPPS)-Ad-400] is a robust and efficient catalyst for oxidation of alkenes and alcohols at room temperature. The catalyst exhibits a high activity and stability in hydrocarbon oxidation by H2 O2 . The method was useful in the oxidation of various primary, secondary-aliphatic, alicyclic and ar...

متن کامل

Microbial oxidation of gaseous hydrocarbons. II. Hydroxylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria.

Cell-free particulate fractions derived from methylotrophic bacteria catalyze the oxygen- and reduced nicotinamide adenine dinucleotide-dependent epoxidation of alkenes and hydroxylation of alkanes. Evidence presented indicates that the hydroxylation and epoxidation reactions are catalyzed by the same or a similar metal-containing monooxygenase.

متن کامل

Modified Titanium Content in Titanosilicates Mesoporous Molecular Sieves MCM-41 as Selective Catalyst for Epoxidation of Alkenes

Ti-MCM-41 was synthesized at pH 3, 7 and 11. The titanium content was determined by AAS and found to be 4%, 3.2% and 4.5%, respectively. In order to increase the titanium content in Ti-MCM-41, Ti(IV) ions were grafted onto Ti-MCM-41 using TiCl4 in toluene and Ti(OBu)4 in ethanol. The incorporation of Ti was determined to be 28% and 30%, respectively. The oxidation of olefins such as cyclopenten...

متن کامل

Peroxynitric Acid: A Convenient Oxygen Source for Oxidation of Organic Compounds Catalyzed by Polyimide-Supported Manganese (III) Tetrakis(4-methoxylphenyl)porphyrin Acetate

In this work, a polyimide (PI) containing triazole units was synthesized using 3,5-diamino-1,2,4-triazole and pyromellitic dianhydride in N-methyl-2-pyrrolidinone. This polymer was used as the support of manganese (III) tetrakis(4-methoxylphenyl)porphyrin acetate to attain a heterogeneous catalyst; namely Mn(T4-OMePP)OAc@PI. The synthesized PI and Mn(T4-OMePP)OAc@PI were characterized by di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 5  شماره 

صفحات  -

تاریخ انتشار 2000